MR12

Code No.: 20406

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
Gundlapochampally (H). Maisammaguda (V). Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

III B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, DECEMBER-2019

Subject: SWITCHING THEORY AND LOGIC DESIGN

Branch: **EEE**

Time:	3 hours	N	Max. Marks: 75
Answer any 5 questions of the following 5x15M=75 M			
1.	a) Compute the following number conversions		[10M]
	(i) $(105.15)_{10}$ to binary number (ii) $(756)_8$ to hexa decimal		nal number
	(iii) (111100001101) ₂ to octal number (iv) (4BAC) ₁₆ to binary num		number
	(v) $(111.0111)_2$ to decimal number .		
	b) Explain the classification of binary codes?		[5M]
2.	a) State the boolean algebra postulates and explain in detail with examples.		[7M]
	b) Design a 2 input EX-OR and EX-NOR gates using minimum number of NAND and NOR		
	gates respectively.		[8M]
3.	a) Compare K-map and tabular methods of minimization.		[7M]
	b) Reduce the following expressions using K-map		[8M]
	(i) $F(A,B,C,D) = \Sigma(5,6,7,9,10,11,13,14,15)$	(ii) $F=\pi (2,7,8,9,10,12)$,
4.	a) What is hazard in a combinational circuit? How they are eliminated?		[7M]
	b) Realize 16X1 Multiplexer using only 2X1 Multiplexer.		[8M]
5.	a) Explain the comparison between PROM, PLA and PAL.		[8M]
	b) How does a Programmable logic device differ from a fixed logic device? What are the		What are the
	primary advantages of using programmable logic devices?		[7M]
6.	6. a) Discuss the applications of shift registers.b) Explain the working of JK flip-flop using truth table.		[7M]
			[8M]
7.	a) What are the capabilities and limitations of finite state machines?		[7M]
	b) Explain Merger chart methods of minimal cover table.		[8M]
8.	a) Enumerate the salient features of ASM charts		[8M]
	b) Draw an ASM chart for designing a circuit which is used to count the number of bits in a		
	register that have a value 1.		[7M]

MR12

Code No.: 20419

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

III B.TECH II SEMESTER SUPPLEMENTARY EXAMINATIONS, DECEMBER-2019

Subject: MICROPROCESSORS AND MICROCONTROLLERS

Branch: **EEE**

Time: 3 hours Max. Marks: 75

Answer any 5 questions of the following

5x15M=75 M

- 1. Explain briefly about the internal hardware architecture of 8086 architecture with a neat block diagram.
- 2. a) Write a program to add the contents of the memory location 2000:0500H to the contents of 3000H: 0600H and store the result in 5000H: 0700H. [8M]
 - b) Write an ALP to perform the addition operation of two 8-bit numbers in 8086. [7M]
- 3. a) Explain the DAC interfacing with 8086 microprocessor. [8M]
 - b) Compare serial and parallel interface. [7M]
- 4. Explain how to interface a stepper motor to 8086 microprocessor.
- 5. a) Write the significance of data communication. Explain the methods of data communication in detail. [10M]
 - b) Explain RS-232 serial data standard. [5M]
- 6. a) Explain the addressing modes of 8051 with examples. [8M]
 - b) Explain the registers which are available in 8051 microcontroller. [7M]
- 7. Draw and discuss the formats and bit definitions of the following SFR's in 8051 microcontroller

 (a) PCON (b) PSW (c) TMOD

 [3x5=15]
- 8. Define key Debouncing? Interface the 4X4 HEX keyboard to 8051 microcontroller with a neat schematic.